各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
Eric Ma:"问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~"
ERIC:
有没有把flash API的函数都放到RAM中运行。
另外,flash的擦出是按扇区擦除的。GROUP{ramfuncs{ -l F021_API_F2837xS_FPU32.lib}} LOAD = FLASHD,RUN= RAMLS03, LOAD_START(_RamfuncsLoadStart),LOAD_SIZE(_RamfuncsLoadSize),LOAD_END(_RamfuncsLoadEnd),RUN_START(_RamfuncsRunStart),RUN_SIZE(_RamfuncsRunSize),RUN_END(_RamfuncsRunEnd),PAGE = 0
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
Eric Ma:"问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~"
ERIC:
有没有把flash API的函数都放到RAM中运行。
另外,flash的擦出是按扇区擦除的。GROUP{ramfuncs{ -l F021_API_F2837xS_FPU32.lib}} LOAD = FLASHD,RUN= RAMLS03, LOAD_START(_RamfuncsLoadStart),LOAD_SIZE(_RamfuncsLoadSize),LOAD_END(_RamfuncsLoadEnd),RUN_START(_RamfuncsRunStart),RUN_SIZE(_RamfuncsRunSize),RUN_END(_RamfuncsRunEnd),PAGE = 0
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
user5253370:
回复 Eric Ma:
多谢回复~ 你提到的这点,我检查了,已经把flash的API放到RAM了,如下: 但问题还是没有消失~ RAMGS8_11 : origin = 0x014000, length = 0x004000 #ifdef __TI_COMPILER_VERSION__ #if __TI_COMPILER_VERSION__ >= 15009000 GROUP { .TI.ramfunc { -l F021_API_F2837xD_FPU32.lib} } LOAD = FLASHA, RUN = RAMGS8_11, LOAD_START(_RamfuncsLoadStart), LOAD_SIZE(_RamfuncsLoadSize), LOAD_END(_RamfuncsLoadEnd), RUN_START(_RamfuncsRunStart), RUN_SIZE(_RamfuncsRunSize), RUN_END(_RamfuncsRunEnd), PAGE = 0 #else GROUP { ramfuncs { -l F021_API_F2837xD_FPU32.lib} } LOAD = FLASHA, RUN = RAMGS8_11, LOAD_START(_RamfuncsLoadStart), LOAD_SIZE(_RamfuncsLoadSize), LOAD_END(_RamfuncsLoadEnd), RUN_START(_RamfuncsRunStart), RUN_SIZE(_RamfuncsRunSize), RUN_END(_RamfuncsRunEnd), PAGE = 0 #endif #endif
编译后的map文件如下:
.TI.ramfunc * 0 00080002 00000895 RUN ADDR = 00015d82 00080002 00000259 F021_API_F2837xD_FPU32.lib : FlashStateMachine.obj (.text:__Fapi_setupFlashStateMachine) 0008025b 0000019d : Program.obj (.text:_Fapi_issueProgrammingCommand) 000803f8 00000088 : Read.obj (.text:__Fapi_loopRegionForValue) 00080480 0000007f : Read.obj (.text:__Fapi_checkRegionForValue) 000804ff 00000042 : BlankCheck.obj (.text:_Fapi_doBlankCheck) 00080541 00000034 : Init.obj (.text:_Fapi_initializeAPI) 00080575 0000002e : Utilities.obj (.text:_Fapi_calculateFletcherChecksum) 000805a3 0000002d : FlashStateMachine.obj (.text:__Fapi_issueFsmCommand) 000805d0 0000002c : Utilities.obj (.text:__Fapi_divideUnsignedLong) 000805fc 00000025 : FlashStateMachine.obj (.text:_Fapi_setActiveFlashBank) 00080621 00000022 : FlashStateMachine.obj (.text:_Fapi_isAddressEcc) 00080643 00000022 : FlashStateMachine.obj (.text:__Fapi_setupSectorsForWrite) 00080665 00000020 : Async.obj (.text:_Fapi_issueAsyncCommandWithAddress) 00080685 0000001a : Utilities.obj (.text:_Fapi_waitDelay) 0008069f 00000016 : Read.obj (.text:_Fapi_flushPipeline) 000806b5 0000000f : Verify.obj (.text:_Fapi_doVerify) 000806c4 0000000d : Utilities.obj (.text:__Fapi_scaleCycleValues) 000806d1 00000001 –HOLE– [fill = 0] 000806d2 0000000c : Init.obj (.ebss) [fill = 0] 000806de 0000000b : Utilities.obj (.text:__Fapi_calculateOtpChecksum) 000806e9 0000000a : FlashStateMachine.obj (.text:_Fapi_checkFsmForReady) 000806f3 00000006 : FlashStateMachine.obj (.text:_Fapi_getFsmStatus) 000806f9 000000be App_Setting.obj (.TI.ramfunc) 000807b7 00000094 Fapi_UserDefinedFunctions.obj (.TI.ramfunc) 0008084b 00000048 F2837xD_SysCtrl.obj (.TI.ramfunc) 00080893 00000004 F2837xD_usDelay.obj (.TI.ramfunc)
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
Eric Ma:
回复 user5253370:
在擦除的时候,有没有把中断关掉。建议整个flash操作过程都关掉FLASH API。
另外,从排查问题的角度上来讲,建议屏蔽掉一些代码,只做擦出操作。进行对比测试。
还有,和例程做进一步对比。
C:\ti\controlSUITE\device_support\F2837xD\v210\F2837xD_examples_Dual\flash_programming
ERIC
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
user5253370:
回复 Eric Ma:
已确认过CPU1的WD禁用了。
发现复位的源头在CPU2,NmiIntruptRegs.NMISHDFLG.all == 512。
CPU2的WD确实时启用了,但FLASH都是CPU1在操作,CPU2没有参与,不明白为啥?
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
Eric Ma:
回复 user5253370:
“
发现复位的源头在CPU2,NmiIntruptRegs.NMISHDFLG.all == 512。
CPU2的WD确实时启用了,但FLASH都是CPU1在操作,CPU2没有参与,不明白为啥?
”
ERIC:
你要检查一下,是否CPU2有哪些地方和CPU1进行通信交换数据,导致卡住,然后看门狗没有喂狗。
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
user5253370:
回复 Eric Ma:
CPU1和2的中断都使用了ADC中断源,ADC是配给CPU1的,当CPU1操作FLASH时,仅关掉了全局中断,DINT。
我理解的是CPU2会继续响应ADC的中断,继续去喂狗,但实际上CPU2却没再进中断。
查看datasheet,没发现相关描述,控制中断源的CPU如果关掉全局中断,会影响另一个CPU响应中断吗?
各位好,如题!
问题说明:将Flash用来实现设备参数掉电保存,待保存参数按顺序写入目标Flash sector中,本次写入不覆盖上次写入的区域,当本sector不足时,将sector擦除,从头开始写。现在的问题是,只要一执行erase操作,芯片就复位,programme写入操作却没有问题,请知情者协助~~
FLASH配置代码如下:
void InitFlash(void)
{
EALLOW;
//
// Set VREADST to the proper value for the flash banks to power up
// properly. This sets the bank power up delay.
//
Flash0CtrlRegs.FBAC.bit.VREADST = 0x14;
//
// At reset bank and pump are in sleep. A Flash access will power up the
// bank and pump automatically.
//
// After a Flash access, bank and pump go to low power mode (configurable
// in FBFALLBACK/FPAC1 registers) if there is no further access to flash.
//
// Power up Flash bank and pump. This also sets the fall back mode of
// flash and pump as active.
//
Flash0CtrlRegs.FPAC1.bit.PMPPWR = 0x1;
Flash0CtrlRegs.FBFALLBACK.bit.BNKPWR0 = 0x3;
//
// Disable Cache and prefetch mechanism before changing wait states
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 0;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 0;
//
// Set waitstates according to frequency
//
// *CAUTION*
// Minimum waitstates required for the flash operating at a given CPU rate
// must be characterized by TI. Refer to the datasheet for the latest
// information.
//
#if CPU_FRQ_200MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x3;
#endif
#if CPU_FRQ_150MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
#if CPU_FRQ_120MHZ
Flash0CtrlRegs.FRDCNTL.bit.RWAIT = 0x2;
#endif
//
// Enable Cache and prefetch mechanism to improve performance of code
// executed from Flash.
//
Flash0CtrlRegs.FRD_INTF_CTRL.bit.DATA_CACHE_EN = 1;
Flash0CtrlRegs.FRD_INTF_CTRL.bit.PREFETCH_EN = 1;
//
// At reset, ECC is enabled. If it is disabled by application software and
// if application again wants to enable ECC.
//
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
//
// Force a pipeline flush to ensure that the write to the last register
// configured occurs before returning.
//
__asm(" RPT #7 || NOP");
}
//
// SeizeFlashPump – Wait until the flash pump is available. Then take control
// of it using the flash pump Semaphore.
//
void SeizeFlashPump(void)
{
EALLOW;
#ifdef CPU1
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x2)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x2;
}
#elif defined(CPU2)
while (FlashPumpSemaphoreRegs.PUMPREQUEST.bit.PUMP_OWNERSHIP != 0x1)
{
FlashPumpSemaphoreRegs.PUMPREQUEST.all = IPC_PUMP_KEY | 0x1;
}
#endif
EDIS;
}
//
// Init_Flash_Sectors – Initialize flash API and active flash bank sectors
//
void Init_Flash_Sectors(void)
{
EALLOW;
Flash0EccRegs.ERR_THRESHOLD.bit.ERR_THRESHOLD = 0x1;
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0x0;
Fapi_StatusType oReturnCheck;
//
// This function is required to initialize the Flash API based on System
// frequency before any other Flash API operation can be performed
//
oReturnCheck = Fapi_initializeAPI(F021_CPU0_BASE_ADDRESS, 200);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
//
// Fapi_setActiveFlashBank function sets the Flash bank and FMC for further
// Flash operations to be performed on the bank
//
oReturnCheck = Fapi_setActiveFlashBank(Fapi_FlashBank0);
if(oReturnCheck != Fapi_Status_Success)
{
Example_Error(oReturnCheck);
}
Flash0EccRegs.ECC_ENABLE.bit.ENABLE = 0xA;
EDIS;
}
erase和programme操作如下:
#pragma CODE_SECTION(StoreData2Flash, ramFuncSection);
int StoreData2Flash(Uint16 *start, Uint32 size, Uint16 sector)
{
//1. declare the variables used for programming flash
Fapi_StatusType oReturnCheck = 0;// Status structure
Fapi_FlashStatusWordType oFlashStatusWord;
volatile Fapi_FlashStatusType oFlashStatus;
uint32 u32Index = 0;
uint16 i = 0;
Uint32 lTemp;
Uint32 lSectorAddr;
uint32 *Buffer32 = (uint32 *)start;
EALLOW;
DINT; // disable global interrupt
//2. check if the sector storing data record is full. if yes then erase the sector
switch(sector)
{
case SECTORK: lSectorAddr = Bzero_SectorK_start; break;
case SECTORL: lSectorAddr = Bzero_SectorL_start; break;
case SECTORM: lSectorAddr = Bzero_SectorM_start; break;
case SECTORN: lSectorAddr = Bzero_SectorN_start; break;
default: EINT;
return 1;
}
lTemp = lSectorAddr;
// search for the most recent data ration record in flash
while(*(unsigned long*)lTemp != 0xFFFFFFFF) // the value at lTemp is not 0xFFFFFFFF which means the location at lTemp is not programmed with some value
{
lTemp += size;
}
if(lSectorAddr + 0x2000 – lTemp < size) // if the flash is full, erase the sector
{
// Erase Sector
//
oReturnCheck = Fapi_issueAsyncCommandWithAddress(Fapi_EraseSector,(uint32 *)lSectorAddr);
// Wait until FSM is done with erase sector operation
while(Fapi_checkFsmForReady() != Fapi_Status_FsmReady){}
// Verify that SectorL is erased. The Erase step itself does a
// verify as it goes. This verify is a 2nd verification that can be done.
oReturnCheck = Fapi_doBlankCheck((uint32 *)lSectorAddr,Bzero_16KSector_u32length,&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
EINT;
return 1;
}
lTemp = lSectorAddr;
}
//3. program the data record to flash
for(i=0, u32Index = lTemp;
(u32Index < (lTemp + size)) &&
(oReturnCheck == Fapi_Status_Success); i+= 8, u32Index+= 8)
{
oReturnCheck = Fapi_issueProgrammingCommand((uint32 *)u32Index,start+i,
8,
0,
0,
Fapi_AutoEccGeneration);
while(Fapi_checkFsmForReady() == Fapi_Status_FsmBusy);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
//
// Read FMSTAT register contents to know the status of FSM after
// program command for any debug
//
oFlashStatus = Fapi_getFsmStatus();
//
// Verify the values programmed. The Program step itself does a verify
// as it goes. This verify is a 2nd verification that can be done.
//
oReturnCheck = Fapi_doVerify((uint32 *)u32Index,
4, Buffer32+(i/2),
&oFlashStatusWord);
if(oReturnCheck != Fapi_Status_Success)
{
//
// Check Flash API documentation for possible errors
//
EINT;
return 1;
}
}
EINT;
return 0;
}
user5253370:
回复 Eric Ma:
我在CPU2的中断里驱动一个输出信号(1ms翻转1次),用示波器观察,在CPU1执行FLASH擦除的操作时,CPU2的中断停了45ms左右(输出信号没有翻转)。
不知道是不是CPU1和CPU2共用一个中断源(ADC),CPU1关全局中断的时候,CPU2也收不到中断了?
还是CPU1在执行FLASH擦除操作时,CPU2无法从FLASH中读取指令了?