近期想在TM4C129上UART3采用dma方式间断性发送数据,对官方例程进行修改后却只能连续发,望各位大佬指教一二
贴上代码
//***************************************************************************** // // udma_demo.c - uDMA example. // // Copyright (c) 2013-2017 Texas Instruments Incorporated. All rights reserved. // Software License Agreement // // Texas Instruments (TI) is supplying this software for use solely and // exclusively on TI's microcontroller products. The software is owned by // TI and/or its suppliers, and is protected under applicable copyright // laws. You may not combine this software with "viral" open-source // software in order to form a larger program. // // THIS SOFTWARE IS PROVIDED "AS IS" AND WITH ALL FAULTS. // NO WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT // NOT LIMITED TO, IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE. TI SHALL NOT, UNDER ANY // CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL, OR CONSEQUENTIAL // DAMAGES, FOR ANY REASON WHATSOEVER. // // This is part of revision 2.1.4.178 of the EK-TM4C1294XL Firmware Package. // //***************************************************************************** #include <stdint.h> #include <stdbool.h> #include <string.h> #include "inc/hw_ints.h" #include "inc/hw_memmap.h" #include "inc/hw_types.h" #include "inc/hw_uart.h" #include "driverlib/fpu.h" #include "driverlib/gpio.h" #include "driverlib/interrupt.h" #include "driverlib/pin_map.h" #include "driverlib/rom.h" #include "driverlib/rom_map.h" #include "driverlib/sysctl.h" #include "driverlib/systick.h" #include "driverlib/uart.h" #include "driverlib/udma.h" #include "utils/cpu_usage.h" #include "utils/uartstdio.h" #include "utils/ustdlib.h" //***************************************************************************** // //! \addtogroup example_list //! <h1>uDMA (udma_demo)</h1> //! //! This example application demonstrates the use of the uDMA controller to //! transfer data between memory buffers, and to transfer data to and from a //! UART. The test runs for 10 seconds before exiting. //! //! UART0, connected to the ICDI virtual COM port and running at 115,200, //! 8-N-1, is used to display messages from this application. // //***************************************************************************** //**************************************************************************** // // System clock rate in Hz. // //**************************************************************************** uint32_t g_ui32SysClock; //***************************************************************************** // // The number of SysTick ticks per second used for the SysTick interrupt. // //***************************************************************************** #define SYSTICKS_PER_SECOND100 //***************************************************************************** // // The size of the memory transfer source and destination buffers (in words). // //***************************************************************************** #define MEM_BUFFER_SIZE1024 //***************************************************************************** // // The size of the UART transmit and receive buffers. They do not need to be // the same size. // //***************************************************************************** #define UART_TXBUF_SIZE10 #define UART_RXBUF_SIZE10 //***************************************************************************** // // The source and destination buffers used for memory transfers. // //***************************************************************************** static uint32_t g_ui32SrcBuf[MEM_BUFFER_SIZE]; static uint32_t g_ui32DstBuf[MEM_BUFFER_SIZE]; //***************************************************************************** // // The transmit and receive buffers used for the UART transfers. There is one // transmit buffer and a pair of recieve ping-pong buffers. // //***************************************************************************** static uint8_t g_ui8TxBuf[UART_TXBUF_SIZE]; static uint8_t g_ui8RxBufA[UART_RXBUF_SIZE]; static uint8_t g_ui8RxBufB[UART_RXBUF_SIZE]; //***************************************************************************** // // The count of uDMA errors. This value is incremented by the uDMA error // handler. // //***************************************************************************** static uint32_t g_ui32uDMAErrCount = 0; //***************************************************************************** // // The count of times the uDMA interrupt occurred but the uDMA transfer was not // complete. This should remain 0. // //***************************************************************************** static uint32_t g_ui32BadISR = 0; //***************************************************************************** // // The count of UART buffers filled, one for each ping-pong buffer. // //***************************************************************************** static uint32_t g_ui32RxBufACount = 0; static uint32_t g_ui32RxBufBCount = 0; //***************************************************************************** // // The count of memory uDMA transfer blocks. This value is incremented by the // uDMA interrupt handler whenever a memory block transfer is completed. // //***************************************************************************** static uint32_t g_ui32MemXferCount = 0; //***************************************************************************** // // The number of seconds elapsed since the start of the program. This value is // maintained by the SysTick interrupt handler. // //***************************************************************************** static uint32_t g_ui32Seconds = 0; //***************************************************************************** // // The control table used by the uDMA controller. This table must be aligned // to a 1024 byte boundary. // //***************************************************************************** #if defined(ewarm) #pragma data_alignment=1024 uint8_t pui8ControlTable[1024]; #elif defined(ccs) #pragma DATA_ALIGN(pui8ControlTable, 1024) uint8_t pui8ControlTable[1024]; #else uint8_t pui8ControlTable[1024] __attribute__ ((aligned(1024))); #endif //***************************************************************************** // // The error routine that is called if the driver library encounters an error. // //***************************************************************************** #ifdef DEBUG void __error__(char *pcFilename, uint32_t ui32Line) { } #endif //***************************************************************************** // // The interrupt handler for the SysTick timer. This handler will increment a // seconds counter whenever the appropriate number of ticks has occurred. It // will also call the CPU usage tick function to find the CPU usage percent. // //***************************************************************************** void SysTickHandler(void) {static uint32_t ui32TickCount = 0;//// Increment the tick counter.//ui32TickCount++;//// If the number of ticks per second has occurred, then increment the// seconds counter.// //if(!(ui32TickCount % SYSTICKS_PER_SECOND)) //{ //g_ui32Seconds++; //} } //***************************************************************************** // // The interrupt handler for uDMA errors. This interrupt will occur if the // uDMA encounters a bus error while trying to perform a transfer. This // handler just increments a counter if an error occurs. // //***************************************************************************** void uDMAErrorHandler(void) {uint32_t ui32Status;//// Check for uDMA error bit//ui32Status = ROM_uDMAErrorStatusGet();//// If there is a uDMA error, then clear the error and increment// the error counter.//if(ui32Status){ROM_uDMAErrorStatusClear();g_ui32uDMAErrCount++;} } //***************************************************************************** // // The interrupt handler for uDMA interrupts from the memory channel. This // interrupt will increment a counter, and then restart another memory // transfer. // //***************************************************************************** void uDMAIntHandler(void) {uint32_t ui32Mode,status;//// Check for the primary control structure to indicate complete.// status = ROM_uDMAIntStatus(); uDMAIntClear(status);ui32Mode = ROM_uDMAChannelModeGet(UDMA_CHANNEL_SW);if(ui32Mode == UDMA_MODE_STOP){//// Configure it for another transfer.//ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW, UDMA_MODE_AUTO,g_ui32SrcBuf, g_ui32DstBuf,MEM_BUFFER_SIZE);//// Initiate another transfer.//ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);ROM_uDMAChannelRequest(UDMA_CHANNEL_SW);} } //***************************************************************************** // // The interrupt handler for UART1. This interrupt will occur when a DMA // transfer is complete using the UART1 uDMA channel. It will also be // triggered if the peripheral signals an error. This interrupt handler will // switch between receive ping-pong buffers A and B. It will also restart a TX // uDMA transfer if the prior transfer is complete. This will keep the UART // running continuously (looping TX data back to RX). // //***************************************************************************** void UART3IntHandler(void) {uint32_t ui32Status;uint32_t ui32Mode;ui32Status = ROM_UARTIntStatus(UART3_BASE, 1);ROM_UARTIntClear(UART3_BASE, ui32Status);ui32Mode = ROM_uDMAChannelModeGet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT);if(ui32Mode == UDMA_MODE_STOP){ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT,UDMA_MODE_PINGPONG,(void *)(UART3_BASE + UART_O_DR),g_ui8RxBufA, sizeof(g_ui8RxBufA));}ui32Mode = ROM_uDMAChannelModeGet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT); if(ui32Mode == UDMA_MODE_STOP){//// Set up the next transfer for the "B" buffer, using the alternate// control structure. When the ongoing receive into the "A" buffer is// done, the uDMA controller will switch back to this one. This// example re-uses buffer B, but a more sophisticated application could// use a rotating set of buffers to increase the amount of time that// the main thread has to process the data in the buffer before it is// reused.//ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT,UDMA_MODE_PINGPONG,(void *)(UART3_BASE + UART_O_DR),g_ui8RxBufA, sizeof(g_ui8RxBufB));////!!!!!!!!!!!!!!!!!!!!!!!} ui32Status = ROM_UARTIntStatus(UART3_BASE, 1);ROM_UARTIntClear(UART3_BASE, ui32Status); //ROM_UARTIntClear(UART3_BASE, UART_INT_DMATX );if(!ROM_uDMAChannelIsEnabled(UDMA_CH17_UART3TX)) // if(ROM_UARTIntStatus(UART3_BASE, UART_INT_DMATX)){ROM_uDMAChannelTransferSet(UDMA_CH17_UART3TX | UDMA_PRI_SELECT,UDMA_MODE_BASIC, g_ui8TxBuf,(void *)(UART3_BASE + UART_O_DR),sizeof(g_ui8TxBuf));ROM_uDMAChannelEnable(UDMA_CH17_UART3TX); // ui32Status = ROM_UARTIntStatus(UART3_BASE, 1); //ROM_UARTIntClear(UART3_BASE, ui32Status); ////ROM_UARTIntClear(UART3_BASE, UART_INT_DMATX );} } void UART3Init(){ ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOJ);ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART3);ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART3);GPIOPinConfigure(GPIO_PJ0_U3RX);GPIOPinConfigure(GPIO_PJ1_U3TX); ROM_GPIOPinTypeUART(GPIO_PORTJ_BASE,GPIO_PIN_0|GPIO_PIN_1);ROM_UARTConfigSetExpClk(UART3_BASE, g_ui32SysClock, 115200,UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |UART_CONFIG_PAR_NONE);ROM_UARTFIFOLevelSet(UART3_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);ROM_UARTEnable(UART3_BASE);ROM_UARTDMAEnable(UART3_BASE, UART_DMA_RX | UART_DMA_TX); // HWREG(UART3_BASE + UART_O_CTL) |= UART_CTL_LBE;ROM_uDMAChannelAssign(UDMA_CH16_UART3RX);ROM_uDMAChannelAssign(UDMA_CH17_UART3TX);//// Enable the UART DMA TX/RX interrupts.//ROM_UARTIntEnable(UART3_BASE, UART_INT_DMATX | UART_INT_DMARX);//// Enable the UART peripheral interrupts.//ROM_IntEnable(INT_UART3); } void uDMA_U3Rx(){ //// Put the attributes in a known state for the uDMA UART1RX channel. These// should already be disabled by default.//ROM_uDMAChannelAttributeDisable(UDMA_CH16_UART3RX,UDMA_ATTR_ALTSELECT | UDMA_ATTR_USEBURST |UDMA_ATTR_HIGH_PRIORITY |UDMA_ATTR_REQMASK);//// Configure the control parameters for the primary control structure for// the UART RX channel. The primary contol structure is used for the "A"// part of the ping-pong receive. The transfer data size is 8 bits, the// source address does not increment since it will be reading from a// register. The destination address increment is byte 8-bit bytes. The// arbitration size is set to 4 to match the RX FIFO trigger threshold.// The uDMA controller will use a 4 byte burst transfer if possible. This// will be somewhat more effecient that single byte transfers.//ROM_uDMAChannelControlSet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT,UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 |UDMA_ARB_4);//// Configure the control parameters for the alternate control structure for// the UART RX channel. The alternate contol structure is used for the "B"// part of the ping-pong receive. The configuration is identical to the// primary/A control structure.// ROM_uDMAChannelControlSet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT, UDMA_SIZE_8 | UDMA_SRC_INC_NONE | UDMA_DST_INC_8 | UDMA_ARB_4);//// Set up the transfer parameters for the UART RX primary control// structure. The mode is set to ping-pong, the transfer source is the// UART data register, and the destination is the receive "A" buffer. The// transfer size is set to match the size of the buffer.//ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_PRI_SELECT,UDMA_MODE_PINGPONG,//UDMA_MODE_PINGPONG,UDMA_MODE_BASIC(void *)(UART3_BASE + UART_O_DR),g_ui8RxBufA, sizeof(g_ui8RxBufA));//// Set up the transfer parameters for the UART RX alternate control// structure. The mode is set to ping-pong, the transfer source is the// UART data register, and the destination is the receive "B" buffer. The// transfer size is set to match the size of the buffer.// ROM_uDMAChannelTransferSet(UDMA_CH16_UART3RX | UDMA_ALT_SELECT,UDMA_MODE_PINGPONG,(void *)(UART3_BASE + UART_O_DR),g_ui8RxBufA, sizeof(g_ui8RxBufA));//!!!!!!!!!!!!!!!!!!!ROM_uDMAChannelEnable(UDMA_CH16_UART3RX); } void uDMA_U4Tx(uint32_t size, uint8_t *data){//// Put the attributes in a known state for the uDMA UART1TX channel. These// should already be disabled by default.//ROM_uDMAChannelAttributeDisable(UDMA_CH17_UART3TX,UDMA_ATTR_ALTSELECT |UDMA_ATTR_HIGH_PRIORITY |UDMA_ATTR_REQMASK);//// Set the USEBURST attribute for the uDMA UART TX channel. This will// force the controller to always use a burst when transferring data from// the TX buffer to the UART. This is somewhat more effecient bus usage// than the default which allows single or burst transfers.//ROM_uDMAChannelAttributeEnable(UDMA_CH17_UART3TX, UDMA_ATTR_USEBURST);//// Configure the control parameters for the UART TX. The uDMA UART TX// channel is used to transfer a block of data from a buffer to the UART.// The data size is 8 bits. The source address increment is 8-bit bytes// since the data is coming from a buffer. The destination increment is// none since the data is to be written to the UART data register. The// arbitration size is set to 4, which matches the UART TX FIFO trigger// threshold.//ROM_uDMAChannelControlSet(UDMA_CH17_UART3TX | UDMA_PRI_SELECT,UDMA_SIZE_8 | UDMA_SRC_INC_8 |UDMA_DST_INC_NONE |UDMA_ARB_4);//// Set up the transfer parameters for the uDMA UART TX channel. This will// configure the transfer source and destination and the transfer size.// Basic mode is used because the peripheral is making the uDMA transfer// request. The source is the TX buffer and the destination is the UART// data register.//ROM_uDMAChannelTransferSet(UDMA_CH17_UART3TX | UDMA_PRI_SELECT,UDMA_MODE_BASIC, data,(void *)(UART3_BASE + UART_O_DR),size);//// Now both the uDMA UART TX and RX channels are primed to start a// transfer. As soon as the channels are enabled, the peripheral will// issue a transfer request and the data transfers will begin.// ROM_uDMAChannelEnable(UDMA_CH17_UART3TX); } //***************************************************************************** // // Initializes the UART1 peripheral and sets up the TX and RX uDMA channels. // The UART is configured for loopback mode so that any data sent on TX will be // received on RX. The uDMA channels are configured so that the TX channel // will copy data from a buffer to the UART TX output. And the uDMA RX channel // will receive any incoming data into a pair of buffers in ping-pong mode. // //***************************************************************************** void InitUART4Transfer(void) {UART3Init();uDMA_U3Rx();uDMA_U4Tx(sizeof(g_ui8TxBuf),g_ui8TxBuf); } //***************************************************************************** // // Initializes the uDMA software channel to perform a memory to memory uDMA // transfer. // //***************************************************************************** void InitSWTransfer(void) { //uint_fast16_t ui16Idx;//// Enable interrupts from the uDMA software channel.//ROM_IntEnable(INT_UDMA);//// Put the attributes in a known state for the uDMA software channel.// These should already be disabled by default.//ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_SW,UDMA_ATTR_USEBURST | UDMA_ATTR_ALTSELECT |(UDMA_ATTR_HIGH_PRIORITY |UDMA_ATTR_REQMASK));//// Configure the control parameters for the SW channel. The SW channel// will be used to transfer between two memory buffers, 32 bits at a time.// Therefore the data size is 32 bits, and the address increment is 32 bits// for both source and destination. The arbitration size will be set to 8,// which causes the uDMA controller to rearbitrate after 8 items are// transferred. This keeps this channel from hogging the uDMA controller// once the transfer is started, and allows other channels cycles if they// are higher priority.//ROM_uDMAChannelControlSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,UDMA_SIZE_32 | UDMA_SRC_INC_32 | UDMA_DST_INC_32 |UDMA_ARB_8);//// Set up the transfer parameters for the software channel. This will// configure the transfer buffers and the transfer size. Auto mode must be// used for software transfers.//ROM_uDMAChannelTransferSet(UDMA_CHANNEL_SW | UDMA_PRI_SELECT,UDMA_MODE_AUTO, g_ui32SrcBuf, g_ui32DstBuf,MEM_BUFFER_SIZE);//// Now the software channel is primed to start a transfer. The channel// must be enabled. For software based transfers, a request must be// issued. After this, the uDMA memory transfer begins.//ROM_uDMAChannelEnable(UDMA_CHANNEL_SW);ROM_uDMAChannelRequest(UDMA_CHANNEL_SW); } void uDMA_Init(){//// Enable the uDMA controller at the system level. Enable it to continue// to run while the processor is in sleep.//ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);//// Enable the uDMA controller error interrupt. This interrupt will occur// if there is a bus error during a transfer.//ROM_IntEnable(INT_UDMAERR);//// Enable the uDMA controller.//ROM_uDMAEnable();//// Point at the control table to use for channel control structures.//ROM_uDMAControlBaseSet(pui8ControlTable); } void delay_s(int s) { ROM_SysCtlDelay((g_ui32SysClock / (3 )) * s); // more accurate } //***************************************************************************** // // This example demonstrates how to use the uDMA controller to transfer data // between memory buffers and to and from a peripheral, in this case a UART. // The uDMA controller is configured to repeatedly transfer a block of data // from one memory buffer to another. It is also set up to repeatedly copy a // block of data from a buffer to the UART output. The UART data is looped // back so the same data is received, and the uDMA controlled is configured to // continuously receive the UART data using ping-pong buffers. // // The processor is put to sleep when it is not doing anything, and this allows // collection of CPU usage data to see how much CPU is being used while the // data transfers are ongoing. // //***************************************************************************** int main(void) {//// Set the clocking to run directly from the crystal at 120MHz.//g_ui32SysClock = MAP_SysCtlClockFreqSet((SYSCTL_XTAL_16MHZ |SYSCTL_OSC_MAIN |SYSCTL_USE_PLL |SYSCTL_CFG_VCO_480), 120000000);uDMA_Init();//// Initialize the uDMA memory to memory transfers.//InitSWTransfer();//// Initialize the uDMA UART transfers.// //InitUART4Transfer();UART3Init();uDMA_U3Rx();uDMA_U4Tx(sizeof(g_ui8TxBuf),g_ui8TxBuf);//// Loop until the button is pressed. The processor is put to sleep// in this loop so that CPU utilization can be measured.//while(1){uint_fast16_t ui16Idx;//// Fill the TX buffer with a simple data pattern.//for(ui16Idx = 0; ui16Idx < UART_TXBUF_SIZE; ui16Idx++){g_ui8TxBuf[ui16Idx] = ui16Idx;}delay_s(10);for(ui16Idx = 0; ui16Idx < UART_TXBUF_SIZE; ui16Idx++){g_ui8TxBuf[ui16Idx] = 0x70;}delay_s(10);for(ui16Idx = 0; ui16Idx < UART_TXBUF_SIZE; ui16Idx++){g_ui8TxBuf[ui16Idx] = 0x71;} delay_s(10);} }
xyz549040622:
DMA没有跑过,我先试试这个 代码,是官方EK的板子吗?