Part Number:BQ27441EVM-G1AOther Parts Discussed in Thread:EV2400, BQSTUDIO
读取电量失败,驱动报下面错误
bq27441 1-0055: rom_mode_gauge_dm_init: INITCOMP not set after 100 seconds
/* * BQ27x00 battery driver * * Copyright (C) 2008 Rodolfo Giometti <giometti@linux.it> * Copyright (C) 2008 Eurotech S.p.A. <info@eurotech.it> * Copyright (C) 2010-2011 Lars-Peter Clausen <lars@metafoo.de> * Copyright (C) 2011 Pali Rohár <pali.rohar@gmail.com> * * Based on a previous work by Copyright (C) 2008 Texas Instruments, Inc. * * This package is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * THIS PACKAGE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED * WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR PURPOSE. * */ /* * Datasheets: * https://www.ti2k.com/wp-content/uploads/ti2k/DeyiSupport_电源管理_BQ27000 * http://focus.ti.com/docs/prod/folders/print/bq27500.html * https://www.ti2k.com/wp-content/uploads/ti2k/DeyiSupport_电源管理_BQ27411-G1 * https://www.ti2k.com/wp-content/uploads/ti2k/DeyiSupport_电源管理_BQ27421-G1 * https://www.ti2k.com/wp-content/uploads/ti2k/DeyiSupport_电源管理_BQ27425-G1 * https://www.ti2k.com/wp-content/uploads/ti2k/DeyiSupport_电源管理_BQ27441-G1 */ #include <linux/module.h> #include <linux/param.h> #include <linux/jiffies.h> #include <linux/workqueue.h> #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/power_supply.h> #include <linux/idr.h> #include <linux/i2c.h> #include <linux/slab.h> #include <asm/unaligned.h> #include <linux/gpio.h> #include <linux/power/bq27441_battery.h> #define DRIVER_VERSION "1.2.0" #define INVALID_REG_ADDR 0xFF //#define CHARGE_EN 94 int g_capacity; enum bq27xxx_reg_index { BQ27XXX_REG_CTRL = 0, BQ27XXX_REG_TEMP, BQ27XXX_REG_INT_TEMP, BQ27XXX_REG_VOLT, BQ27XXX_REG_AI, BQ27XXX_REG_FLAGS, BQ27XXX_REG_TTE, BQ27XXX_REG_TTF, BQ27XXX_REG_TTES, BQ27XXX_REG_TTECP, BQ27XXX_REG_NAC, BQ27XXX_REG_FCC, BQ27XXX_REG_CYCT, BQ27XXX_REG_AE, BQ27XXX_REG_SOC, BQ27XXX_REG_DCAP, BQ27XXX_POWER_AVG, NUM_REGS }; /* bq27500 registers */ static __initdata u8 bq27500_regs[NUM_REGS] = { 0x00, /* CONTROL */ 0x06, /* TEMP */ 0xFF, /* INT TEMP -NA */ 0x08, /* VOLT */ 0x14, /* AVG CURR */ 0x0A, /* FLAGS */ 0x16, /* TTE */ 0x18, /* TTF */ 0x1c, /* TTES */ 0x26, /* TTECP */ 0x0C, /* NAC */ 0x12, /* LMD(FCC) */ 0x2A, /* CYCT */ 0x22, /* AE */ 0x2C, /* SOC(RSOC) */ 0x3C, /* DCAP(ILMD) */ 0x24, /* AP */ }; /* bq27520 registers */ static __initdata u8 bq27520_regs[] = { 0x00, /* CONTROL */ 0x06, /* TEMP */ 0xFF, /* INT TEMP - NA*/ 0x08, /* VOLT */ 0x14, /* AVG CURR */ 0x0A, /* FLAGS */ 0x16, /* TTE */ 0x18, /* TTF */ 0x1c, /* TTES */ 0x26, /* TTECP */ 0x0C, /* NAC */ 0x12, /* LMD */ 0xFF, /* CYCT - NA */ 0x22, /* AE */ 0x2C, /* SOC(RSOC */ 0xFF, /* DCAP(ILMD) - NA */ 0x24, /* AP */ }; /* bq2753x registers */ static __initdata u8 bq2753x_regs[] = { 0x00, /* CONTROL */ 0x06, /* TEMP */ 0xFF, /* INT TEMP - NA*/ 0x08, /* VOLT */ 0x14, /* AVG CURR */ 0x0A, /* FLAGS */ 0x16, /* TTE */ 0xFF, /* TTF - NA */ 0xFF, /* TTES - NA */ 0xFF, /* TTECP - NA */ 0x0C, /* NAC */ 0x12, /* LMD(FCC) */ 0x2A, /* CYCT */ 0xFF, /* AE - NA */ 0x2C, /* SOC(RSOC) */ 0xFF, /* DCAP(ILMD) - NA */ 0x24, /* AP */ }; /* bq27200 registers */ static __initdata u8 bq27200_regs[NUM_REGS] = { 0x00, /* CONTROL */ 0x06, /* TEMP */ 0xFF, /* INT TEMP - NA */ 0x08, /* VOLT */ 0x14, /* AVG CURR */ 0x0A, /* FLAGS */ 0x16, /* TTE */ 0x18, /* TTF */ 0x1c, /* TTES */ 0x26, /* TTECP */ 0x0C, /* NAC */ 0x12, /* LMD(FCC) */ 0x2A, /* CYCT */ 0x22, /* AE */ 0x0B, /* SOC(RSOC) */ 0x76, /* DCAP(ILMD) */ 0x24, /* AP */ }; /* bq274xx registers */ static __initdata u8 bq27441_regs[NUM_REGS] = { 0x00, /* CONTROL */ 0x02, /* TEMP */ 0x1e, /* INT TEMP */ 0x04, /* VOLT */ 0x10, /* AVG CURR */ 0x06, /* FLAGS */ 0xFF, /* TTE - NA */ 0xFF, /* TTF - NA */ 0xFF, /* TTES - NA */ 0xFF, /* TTECP - NA */ 0x08, /* NAC */ 0x0E, /* FCC */ 0xFF, /* CYCT - NA */ 0xFF, /* AE - NA */ 0x1C, /* SOC */ 0x3C, /* DCAP - NA */ 0x18, /* AP */ }; /* bq276xx registers - same as bq274xx except CYCT */ static __initdata u8 bq276xx_regs[NUM_REGS] = { 0x00, /* CONTROL */ 0x02, /* TEMP */ 0x1e, /* INT TEMP */ 0x04, /* VOLT */ 0x10, /* AVG CURR */ 0x06, /* FLAGS */ 0xFF, /* TTE - NA */ 0xFF, /* TTF - NA */ 0xFF, /* TTES - NA */ 0xFF, /* TTECP - NA */ 0x08, /* NAC */ 0x0E, /* FCC */ 0x22, /* CYCT */ 0xFF, /* AE - NA */ 0x1C, /* SOC */ 0x3C, /* DCAP - NA */ 0x18, /* AP */ }; /* * SBS Commands for DF access - these are pretty standard * So, no need to go in the command array */ #define BLOCK_DATA_CLASS 0x3E #define DATA_BLOCK 0x3F #define BLOCK_DATA 0x40 #define BLOCK_DATA_CHECKSUM 0x60 #define BLOCK_DATA_CONTROL 0x61 /* bq274xx/bq276xx specific command information */ #define BQ27441_UNSEAL_KEY 0x80008000 #define BQ27441_SOFT_RESET 0x43 #define BQ27441_FLAG_ITPOR 0x20 #define BQ27441_CTRL_STATUS_INITCOMP 0x80 #define BQ27XXX_FLAG_DSC BIT(0) #define BQ27XXX_FLAG_SOCF BIT(1) /* State-of-Charge threshold final */ #define BQ27XXX_FLAG_SOC1 BIT(2) /* State-of-Charge threshold 1 */ #define BQ27XXX_FLAG_FC BIT(9) #define BQ27XXX_FLAG_OTD BIT(14) #define BQ27XXX_FLAG_OTC BIT(15) /* BQ27000 has different layout for Flags register */ #define BQ27200_FLAG_EDVF BIT(0) /* Final End-of-Discharge-Voltage flag */ #define BQ27200_FLAG_EDV1 BIT(1) /* First End-of-Discharge-Voltage flag */ #define BQ27200_FLAG_CI BIT(4) /* Capacity Inaccurate flag */ #define BQ27200_FLAG_FC BIT(5) #define BQ27200_FLAG_CHGS BIT(7) /* Charge state flag */ #define BQ27200_RS 20 /* Resistor sense */ #define BQ27200_POWER_CONSTANT (256 * 29200 / 1000) /* Subcommands of Control() */ #define CONTROL_STATUS_SUBCMD 0x0000 #define DEV_TYPE_SUBCMD 0x0001 #define FW_VER_SUBCMD 0x0002 #define DF_VER_SUBCMD 0x001F #define RESET_SUBCMD 0x0041 #define SET_CFGUPDATE_SUBCMD 0x0013 #define SEAL_SUBCMD 0x0020 /* Location of SEAL enable bit in bq276xx DM */ #define BQ276XX_OP_CFG_B_SUBCLASS 64 #define BQ276XX_OP_CFG_B_OFFSET 2 #define BQ276XX_OP_CFG_B_DEF_SEAL_BIT (1 << 5) struct bq27x00_device_info; struct bq27x00_access_methods { int (*read)(struct bq27x00_device_info *di, u8 reg, bool single); int (*write)(struct bq27x00_device_info *di, u8 reg, int value, bool single); int (*blk_read)(struct bq27x00_device_info *di, u8 reg, u8 *data, u8 sz); int (*blk_write)(struct bq27x00_device_info *di, u8 reg, u8 *data, u8 sz); }; enum bq27x00_chip { BQ27200, BQ27500, BQ27520, BQ27441, BQ276XX, BQ2753X}; struct bq27x00_reg_cache { int temperature; int time_to_empty; int time_to_empty_avg; int time_to_full; int charge_full; int cycle_count; int capacity; int energy; int flags; int power_avg; int health; }; struct dm_reg { u8 subclass; u8 offset; u8 len; u32 data; }; struct bq27x00_device_info { struct device *dev; int id; enum bq27x00_chip chip; struct bq27x00_reg_cache cache; int charge_design_full; unsigned long last_update; struct delayed_work work; struct power_supply bat; struct bq27x00_access_methods bus; struct mutex lock; int fw_ver; int df_ver; u8 regs[NUM_REGS]; struct dm_reg *dm_regs; u16 dm_regs_count; }; static __initdata enum power_supply_property bq27x00_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, }; static __initdata enum power_supply_property bq27520_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG, POWER_SUPPLY_PROP_TIME_TO_FULL_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_ENERGY_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, }; static __initdata enum power_supply_property bq2753x_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_POWER_AVG, POWER_SUPPLY_PROP_HEALTH, POWER_SUPPLY_PROP_CYCLE_COUNT, }; static __initdata enum power_supply_property bq27441_battery_props[] = { //added by yue.zhong at 2017-05-08 14:40 // POWER_SUPPLY_PROP_STATUS, //end added by yue.zhong at 2017-05-08 14:40 POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_HEALTH, }; static __initdata enum power_supply_property bq276xx_battery_props[] = { POWER_SUPPLY_PROP_STATUS, POWER_SUPPLY_PROP_PRESENT, POWER_SUPPLY_PROP_VOLTAGE_NOW, POWER_SUPPLY_PROP_CURRENT_NOW, POWER_SUPPLY_PROP_CAPACITY, POWER_SUPPLY_PROP_CAPACITY_LEVEL, POWER_SUPPLY_PROP_TEMP, POWER_SUPPLY_PROP_TECHNOLOGY, POWER_SUPPLY_PROP_CHARGE_FULL, POWER_SUPPLY_PROP_CHARGE_NOW, POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN, POWER_SUPPLY_PROP_CYCLE_COUNT, }; /* * Ordering the parameters based on subclass and then offset will help in * having fewer flash writes while updating. * Customize these values and, if necessary, add more based on system needs. */ static struct dm_reg bq27441_dm_regs[] = { {82, 0, 2, 15729}, /* Qmax */ {82, 5, 1, 0x81}, /* Load Select */ {82, 10, 2, 4000}, /* Design Capacity */ {82, 12, 2, 15200}, /* Design Energy */ {82, 16, 2, 3000}, /* Terminate Voltage */ {82, 27, 2, 110}, /* Taper rate */ }; static struct dm_reg bq276xx_dm_regs[] = { {64, 2, 1, 0x2C}, /* Op Config B */ {82, 0, 2, 1000}, /* Qmax */ {82, 2, 1, 0x81}, /* Load Select */ {82, 3, 2, 1340}, /* Design Capacity */ {82, 5, 2, 3700}, /* Design Energy */ {82, 9, 2, 3250}, /* Terminate Voltage */ {82, 20, 2, 110}, /* Taper rate */ }; static unsigned int por_detect_flag = 0; static unsigned int poll_interval = 360; module_param(poll_interval, uint, 0644); MODULE_PARM_DESC(poll_interval, "battery poll interval in seconds - " \ "0 disables polling"); /* * Forward Declarations */ static int read_dm_block(struct bq27x00_device_info *di, u8 subclass, u8 offset, u8 *data); /* * Common code for BQ27x00 devices */ static inline int bq27xxx_read(struct bq27x00_device_info *di, int reg_index, bool single) { int val; /* Reports 0 for invalid/missing registers */ if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return 0; val = di->bus.read(di, di->regs[reg_index], single); return val; } static inline int bq27xxx_write(struct bq27x00_device_info *di, int reg_index, int value, bool single) { if (!di || di->regs[reg_index] == INVALID_REG_ADDR) return -1; return di->bus.write(di, di->regs[reg_index], value, single); } static int control_cmd_wr(struct bq27x00_device_info *di, u16 cmd) { dev_dbg(di->dev, "%s: cmd - %04x\n", __func__, cmd); return di->bus.write(di, BQ27XXX_REG_CTRL, cmd, false); } static int control_cmd_read(struct bq27x00_device_info *di, u16 cmd) { dev_dbg(di->dev, "%s: cmd - %04x\n", __func__, cmd); di->bus.write(di, BQ27XXX_REG_CTRL, cmd, false); msleep(5); return di->bus.read(di, BQ27XXX_REG_CTRL, false); } /* * It is assumed that the gauge is in unsealed mode when this function * is called */ static int bq276xx_seal_enabled(struct bq27x00_device_info *di) { u8 buf[32]; u8 op_cfg_b; if (!read_dm_block(di, BQ276XX_OP_CFG_B_SUBCLASS, BQ276XX_OP_CFG_B_OFFSET, buf)) { return 1; /* Err on the side of caution and try to seal */ } op_cfg_b = buf[BQ276XX_OP_CFG_B_OFFSET & 0x1F]; if (op_cfg_b & BQ276XX_OP_CFG_B_DEF_SEAL_BIT) return 1; return 0; } #define SEAL_UNSEAL_POLLING_RETRY_LIMIT 1000 static inline int sealed(struct bq27x00_device_info *di) { return control_cmd_read(di, CONTROL_STATUS_SUBCMD) & (1 << 13); } static int unseal(struct bq27x00_device_info *di, u32 key) { int i = 0; dev_dbg(di->dev, "%s: key - %08x\n", __func__, key); if (!sealed(di)) goto out; di->bus.write(di, BQ27XXX_REG_CTRL, key & 0xFFFF, false); msleep(5); di->bus.write(di, BQ27XXX_REG_CTRL, (key & 0xFFFF0000) >> 16, false); msleep(5); while (i < SEAL_UNSEAL_POLLING_RETRY_LIMIT) { i++; if (!sealed(di)) break; msleep(10); } out: if (i == SEAL_UNSEAL_POLLING_RETRY_LIMIT) { dev_err(di->dev, "%s: failed\n", __func__); return 0; } else { return 1; } } static int seal(struct bq27x00_device_info *di) { int i = 0; int is_sealed; dev_dbg(di->dev, "%s:\n", __func__); is_sealed = sealed(di); if (is_sealed) return is_sealed; if (di->chip == BQ276XX && !bq276xx_seal_enabled(di)) { dev_dbg(di->dev, "%s: sealing is not enabled\n", __func__); return is_sealed; } di->bus.write(di, BQ27XXX_REG_CTRL, SEAL_SUBCMD, false); while (i < SEAL_UNSEAL_POLLING_RETRY_LIMIT) { i++; is_sealed = sealed(di); if (is_sealed) break; msleep(10); } if (!is_sealed) dev_err(di->dev, "%s: failed\n", __func__); return is_sealed; } #define CFG_UPDATE_POLLING_RETRY_LIMIT 50 static int enter_cfg_update_mode(struct bq27x00_device_info *di) { int i = 0; u16 flags; dev_dbg(di->dev, "%s:\n", __func__); if (!unseal(di, BQ27441_UNSEAL_KEY)) return 0; control_cmd_wr(di, SET_CFGUPDATE_SUBCMD); msleep(5); while (i < CFG_UPDATE_POLLING_RETRY_LIMIT) { i++; flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); if (flags & (1 << 4)) break; msleep(100); } if (i == CFG_UPDATE_POLLING_RETRY_LIMIT) { dev_err(di->dev, "%s: failed %04x\n", __func__, flags); return 0; } return 1; } static int exit_cfg_update_mode(struct bq27x00_device_info *di) { int i = 0; u16 flags; dev_dbg(di->dev, "%s:\n", __func__); control_cmd_wr(di, BQ27441_SOFT_RESET); while (i < CFG_UPDATE_POLLING_RETRY_LIMIT) { i++; flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); if (!(flags & (1 << 4))) break; msleep(100); } if (i == CFG_UPDATE_POLLING_RETRY_LIMIT) { dev_err(di->dev, "%s: failed %04x\n", __func__, flags); return 0; } if (seal(di)) return 1; else return 0; } static u8 checksum(u8 *data) { u16 sum = 0; int i; for (i = 0; i < 32; i++) sum += data[i]; sum &= 0xFF; return 0xFF - sum; } #ifdef DEBUG static void print_buf(const char *msg, u8 *buf) { int i; printk("\nbq: %s buf: ", msg); for (i = 0; i < 32; i++) printk("%02x ", buf[i]); printk("\n"); } #else #define print_buf(a, b) #endif static int update_dm_block(struct bq27x00_device_info *di, u8 subclass, u8 offset, u8 *data) { u8 buf[32]; u8 cksum; u8 blk_offset = offset >> 5; dev_dbg(di->dev, "%s: subclass %d offset %d\n", __func__, subclass, offset); di->bus.write(di, BLOCK_DATA_CONTROL, 0, true); msleep(5); di->bus.write(di, BLOCK_DATA_CLASS, subclass, true); msleep(5); di->bus.write(di, DATA_BLOCK, blk_offset, true); msleep(5); di->bus.blk_write(di, BLOCK_DATA, data, 32); msleep(5); print_buf(__func__, data); cksum = checksum(data); di->bus.write(di, BLOCK_DATA_CHECKSUM, cksum, true); msleep(5); /* Read back and compare to make sure write is successful */ di->bus.write(di, DATA_BLOCK, blk_offset, true); msleep(5); di->bus.blk_read(di, BLOCK_DATA, buf, 32); if (memcmp(data, buf, 32)) { dev_err(di->dev, "%s: error updating subclass %d offset %d\n", __func__, subclass, offset); return 0; } else { return 1; } } static int read_dm_block(struct bq27x00_device_info *di, u8 subclass, u8 offset, u8 *data) { u8 cksum_calc, cksum; u8 blk_offset = offset >> 5; dev_dbg(di->dev, "%s: subclass %d offset %d\n", __func__, subclass, offset); di->bus.write(di, BLOCK_DATA_CONTROL, 0, true); msleep(5); di->bus.write(di, BLOCK_DATA_CLASS, subclass, true); msleep(5); di->bus.write(di, DATA_BLOCK, blk_offset, true); msleep(5); di->bus.blk_read(di, BLOCK_DATA, data, 32); cksum_calc = checksum(data); cksum = di->bus.read(di, BLOCK_DATA_CHECKSUM, true); if (cksum != cksum_calc) { dev_err(di->dev, "%s: error reading subclass %d offset %d\n", __func__, subclass, offset); return 0; } print_buf(__func__, data); return 1; } /* * Return the battery State-of-Charge * Or < 0 if something fails. */ static int bq27x00_battery_read_soc(struct bq27x00_device_info *di) { int soc; soc = bq27xxx_read(di, BQ27XXX_REG_SOC, false); if (soc < 0) dev_dbg(di->dev, "error reading relative State-of-Charge\n"); return soc; } /* * Return a battery charge value in μAh * Or < 0 if something fails. */ static int bq27x00_battery_read_charge(struct bq27x00_device_info *di, u8 reg) { int charge; charge = bq27xxx_read(di, reg, false); if (charge < 0) { dev_dbg(di->dev, "error reading charge register %02x: %d\n", reg, charge); return charge; } if (di->chip == BQ27200) charge = charge * 3570 / BQ27200_RS; else charge *= 1000; return charge; } /* * Return the battery Nominal available capaciy in μAh * Or < 0 if something fails. */ static inline int bq27x00_battery_read_nac(struct bq27x00_device_info *di) { int flags; if (di->chip == BQ27200) { flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, true); if (flags >= 0 && (flags & BQ27200_FLAG_CI)) return -ENODATA; } return bq27x00_battery_read_charge(di, BQ27XXX_REG_NAC); } /* * Return the battery Last measured discharge in μAh * Or < 0 if something fails. */ static inline int bq27x00_battery_read_fcc(struct bq27x00_device_info *di) { return bq27x00_battery_read_charge(di, BQ27XXX_REG_FCC); } /* * Return the Design Capacity in μAh * Or < 0 if something fails. */ static int bq27x00_battery_read_dcap(struct bq27x00_device_info *di) { int dcap; dcap = bq27xxx_read(di, BQ27XXX_REG_DCAP, false); if (dcap < 0) { dev_dbg(di->dev, "error reading initial last measured discharge\n"); return dcap; } if (di->chip == BQ27200) dcap = dcap * 256 * 3570 / BQ27200_RS; else dcap *= 1000; return dcap; } /* * Return the battery Available energy in μWh * Or < 0 if something fails. */ static int bq27x00_battery_read_energy(struct bq27x00_device_info *di) { int ae; ae = bq27xxx_read(di, BQ27XXX_REG_AE, false); if (ae < 0) { dev_dbg(di->dev, "error reading available energy\n"); return ae; } if (di->chip == BQ27200) ae = ae * 29200 / BQ27200_RS; else ae *= 1000; return ae; } /* * Return the battery temperature in tenths of degree Kelvin * Or < 0 if something fails. */ static int bq27x00_battery_read_temperature(struct bq27x00_device_info *di) { int temp; temp = bq27xxx_read(di, BQ27XXX_REG_TEMP, false); if (temp < 0) { dev_err(di->dev, "error reading temperature\n"); return temp; } if (di->chip == BQ27200) temp = 5 * temp / 2; return temp; } /* * Return the battery Cycle count total * Or < 0 if something fails. */ static int bq27x00_battery_read_cyct(struct bq27x00_device_info *di) { int cyct; cyct = bq27xxx_read(di, BQ27XXX_REG_CYCT, false); if (cyct < 0) dev_err(di->dev, "error reading cycle count total\n"); return cyct; } /* * Read a time register. * Return < 0 if something fails. */ static int bq27x00_battery_read_time(struct bq27x00_device_info *di, u8 reg) { int tval; tval = bq27xxx_read(di, reg, false); if (tval < 0) { dev_dbg(di->dev, "error reading time register %02x: %d\n", reg, tval); return tval; } if (tval == 65535) return -ENODATA; return tval * 60; } /* * Read a power avg register. * Return < 0 if something fails. */ static int bq27x00_battery_read_pwr_avg(struct bq27x00_device_info *di, u8 reg) { int tval; tval = bq27xxx_read(di, reg, false); if (tval < 0) { dev_err(di->dev, "error reading power avg rgister %02x: %d\n", reg, tval); return tval; } if (di->chip == BQ27200) return (tval * BQ27200_POWER_CONSTANT) / BQ27200_RS; else return tval; } static int overtemperature(struct bq27x00_device_info *di, u16 flags) { if (di->chip == BQ27520) return flags & (BQ27XXX_FLAG_OTC | BQ27XXX_FLAG_OTD); else return flags & BQ27XXX_FLAG_OTC; } /* * Read flag register. * Return < 0 if something fails. */ static int bq27x00_battery_read_health(struct bq27x00_device_info *di) { u16 tval; tval = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); if (tval < 0) { dev_err(di->dev, "error reading flag register:%d\n", tval); return tval; } if ((di->chip == BQ27200)) { if (tval & BQ27200_FLAG_EDV1) tval = POWER_SUPPLY_HEALTH_DEAD; else tval = POWER_SUPPLY_HEALTH_GOOD; return tval; } else { if (tval & BQ27XXX_FLAG_SOCF) tval = POWER_SUPPLY_HEALTH_DEAD; else if (overtemperature(di, tval)) tval = POWER_SUPPLY_HEALTH_OVERHEAT; else tval = POWER_SUPPLY_HEALTH_GOOD; return tval; } return -1; } static void bq27x00_update(struct bq27x00_device_info *di) { struct bq27x00_reg_cache cache = {0, }; bool is_bq27200 = di->chip == BQ27200; bool is_bq27500 = di->chip == BQ27500; bool is_bq27441 = di->chip == BQ27441; bool is_bq276xx = di->chip == BQ276XX; cache.flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, !is_bq27500); if (cache.flags >= 0) { if (is_bq27200 && (cache.flags & BQ27200_FLAG_CI)) { cache.capacity = -ENODATA; cache.energy = -ENODATA; cache.time_to_empty = -ENODATA; cache.time_to_empty_avg = -ENODATA; cache.time_to_full = -ENODATA; cache.charge_full = -ENODATA; cache.health = -ENODATA; } else { cache.capacity = bq27x00_battery_read_soc(di); g_capacity = cache.capacity; if (!(is_bq27441 || is_bq276xx)) { cache.energy = bq27x00_battery_read_energy(di); cache.time_to_empty = bq27x00_battery_read_time(di, BQ27XXX_REG_TTE); cache.time_to_empty_avg = bq27x00_battery_read_time(di, BQ27XXX_REG_TTECP); cache.time_to_full = bq27x00_battery_read_time(di, BQ27XXX_REG_TTF); } cache.charge_full = bq27x00_battery_read_fcc(di); cache.health = bq27x00_battery_read_health(di); } cache.temperature = bq27x00_battery_read_temperature(di); if (!is_bq27441) cache.cycle_count = bq27x00_battery_read_cyct(di); cache.power_avg = bq27x00_battery_read_pwr_avg(di, BQ27XXX_POWER_AVG); /* We only have to read charge design full once */ if ((di->charge_design_full <= 0) || por_detect_flag) { di->charge_design_full = bq27x00_battery_read_dcap(di); } } if (memcmp(&di->cache, &cache, sizeof(cache)) != 0) { di->cache = cache; power_supply_changed(&di->bat); } di->last_update = jiffies; } static void copy_to_dm_buf_big_endian(struct bq27x00_device_info *di, u8 *buf, u8 offset, u8 sz, u32 val) { dev_dbg(di->dev, "%s: offset %d sz %d val %d\n", __func__, offset, sz, val); switch (sz) { case 1: buf[offset] = (u8) val; break; case 2: put_unaligned_be16((u16) val, &buf[offset]); break; case 4: put_unaligned_be32(val, &buf[offset]); break; default: dev_err(di->dev, "%s: bad size for dm parameter - %d", __func__, sz); break; } } static int rom_mode_gauge_init_completed(struct bq27x00_device_info *di) { dev_dbg(di->dev, "%s:\n", __func__); return control_cmd_read(di, CONTROL_STATUS_SUBCMD) & BQ27441_CTRL_STATUS_INITCOMP; } static bool rom_mode_gauge_dm_initialized(struct bq27x00_device_info *di) { u16 flags; flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); dev_dbg(di->dev, "%s: flags - 0x%04x\n", __func__, flags); if (flags & BQ27441_FLAG_ITPOR) return false; else return true; } #define INITCOMP_TIMEOUT_MS 10000 static void rom_mode_gauge_dm_init(struct bq27x00_device_info *di) { int i; int timeout = INITCOMP_TIMEOUT_MS; u8 subclass, offset; u32 blk_number; u32 blk_number_prev = 0; u8 buf[32]; bool buf_valid = false; struct dm_reg *dm_reg; dev_dbg(di->dev, "%s:\n", __func__); while (!rom_mode_gauge_init_completed(di) && timeout > 0) { msleep(100); timeout -= 100; } if (timeout <= 0) { dev_err(di->dev, "%s: INITCOMP not set after %d seconds\n", __func__, INITCOMP_TIMEOUT_MS/100); return; } if (!di->dm_regs || !di->dm_regs_count) { dev_err(di->dev, "%s: Data not available for DM initialization\n", __func__); return; } enter_cfg_update_mode(di); for (i = 0; i < di->dm_regs_count; i++) { dm_reg = &di->dm_regs[i]; subclass = dm_reg->subclass; offset = dm_reg->offset; /** Create a composite block number to see if the subsequent* register also belongs to the same 32 btye block in the DM*/ blk_number = subclass << 8; blk_number |= offset >> 5; if (blk_number == blk_number_prev) { copy_to_dm_buf_big_endian(di, buf, offset, dm_reg->len, dm_reg->data); } else { if (buf_valid) update_dm_block(di, blk_number_prev >> 8, (blk_number_prev << 5) & 0xFF , buf); else buf_valid = true; read_dm_block(di, dm_reg->subclass, dm_reg->offset, buf); copy_to_dm_buf_big_endian(di, buf, offset, dm_reg->len, dm_reg->data); } blk_number_prev = blk_number; } /* Last buffer to be written */ if (buf_valid) update_dm_block(di, subclass, offset, buf); exit_cfg_update_mode(di); } static void bq27x00_battery_poll(struct work_struct *work) { struct bq27x00_device_info *di = container_of(work, struct bq27x00_device_info, work.work); if (((di->chip == BQ27441) || (di->chip == BQ276XX)) && !rom_mode_gauge_dm_initialized(di)) { por_detect_flag = 1; rom_mode_gauge_dm_init(di); } bq27x00_update(di); if (poll_interval > 0) { /* The timer does not have to be accurate. */ set_timer_slack(&di->work.timer, poll_interval * HZ / 4); schedule_delayed_work(&di->work, poll_interval * HZ); } } /* * Return the battery average current in μA * Note that current can be negative signed as well * Or 0 if something fails. */ static int bq27x00_battery_current(struct bq27x00_device_info *di, union power_supply_propval *val) { int curr; int flags; curr = bq27xxx_read(di, BQ27XXX_REG_AI, false); if (curr < 0) { dev_err(di->dev, "error reading current\n"); return curr; } if (di->chip == BQ27200) { flags = bq27xxx_read(di, BQ27XXX_REG_FLAGS, false); if (flags & BQ27200_FLAG_CHGS) { dev_dbg(di->dev, "negative current!\n"); curr = -curr; } val->intval = curr * 3570 / BQ27200_RS; } else { /* Other gauges return signed value */ val->intval = (int)((s16)curr) * 1000; } return 0; } static int bq27x00_battery_status(struct bq27x00_device_info *di, union power_supply_propval *val) { int status; if (di->chip == BQ27200) { if (di->cache.flags & BQ27200_FLAG_FC) status = POWER_SUPPLY_STATUS_FULL; else if (di->cache.flags & BQ27200_FLAG_CHGS) status = POWER_SUPPLY_STATUS_CHARGING; else if (power_supply_am_i_supplied(&di->bat)) status = POWER_SUPPLY_STATUS_NOT_CHARGING; else status = POWER_SUPPLY_STATUS_DISCHARGING; } else { if (di->cache.flags & BQ27XXX_FLAG_FC) { status = POWER_SUPPLY_STATUS_FULL;} else if (di->cache.flags & BQ27XXX_FLAG_DSC) { status = POWER_SUPPLY_STATUS_DISCHARGING;} else { status = POWER_SUPPLY_STATUS_CHARGING;} } val->intval = status; return 0; } static int bq27x00_battery_capacity_level(struct bq27x00_device_info *di, union power_supply_propval *val) { int level; if (di->chip == BQ27200) { if (di->cache.flags & BQ27200_FLAG_FC) level = POWER_SUPPLY_CAPACITY_LEVEL_FULL; else if (di->cache.flags & BQ27200_FLAG_EDV1) level = POWER_SUPPLY_CAPACITY_LEVEL_LOW; else if (di->cache.flags & BQ27200_FLAG_EDVF) level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL; else level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL; } else { if (di->cache.flags & BQ27XXX_FLAG_FC) { level = POWER_SUPPLY_CAPACITY_LEVEL_FULL;} else if (di->cache.flags & BQ27XXX_FLAG_SOC1) { level = POWER_SUPPLY_CAPACITY_LEVEL_LOW;} else if (di->cache.flags & BQ27XXX_FLAG_SOCF) { level = POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL;} else { level = POWER_SUPPLY_CAPACITY_LEVEL_NORMAL;} } val->intval = level; return 0; } /* * Return the battery Voltage in millivolts * Or < 0 if something fails. */ int voltage = 0; static int bq27x00_battery_voltage(struct bq27x00_device_info *di, union power_supply_propval *val) { int volt; /*gpio_direction_output(CHARGE_EN,1); gpio_set_value(CHARGE_EN,1); mdelay(20);*/ volt = bq27xxx_read(di, BQ27XXX_REG_VOLT, false); //gpio_set_value(CHARGE_EN,0); if (volt < 0) { dev_err(di->dev, "error reading voltage\n"); return volt; } voltage = volt; val->intval = volt * 1000; return 0; } u32 bq27441_battery_voltage(void) { int bq27441_volt; bq27441_volt = voltage; return bq27441_volt; } EXPORT_SYMBOL_GPL(bq27441_battery_voltage); static int bq27x00_simple_value(int value, union power_supply_propval *val) { if (value < 0) return value; val->intval = value; return 0; } #define to_bq27x00_device_info(x) container_of((x), \ struct bq27x00_device_info, bat); static int bq27x00_battery_get_property(struct power_supply *psy, enum power_supply_property psp, union power_supply_propval *val) { int ret = 0; struct bq27x00_device_info *di = to_bq27x00_device_info(psy); mutex_lock(&di->lock); if (time_is_before_jiffies(di->last_update + 5 * HZ)) { cancel_delayed_work_sync(&di->work); bq27x00_battery_poll(&di->work.work); } mutex_unlock(&di->lock); if (psp != POWER_SUPPLY_PROP_PRESENT && di->cache.flags < 0) return -ENODEV; switch (psp) { case POWER_SUPPLY_PROP_STATUS: ret = bq27x00_battery_status(di, val); break; case POWER_SUPPLY_PROP_VOLTAGE_NOW: ret = bq27x00_battery_voltage(di, val); bq27441_battery_voltage(); break; case POWER_SUPPLY_PROP_PRESENT: val->intval = di->cache.flags < 0 ? 0 : 1; break; case POWER_SUPPLY_PROP_CURRENT_NOW: ret = bq27x00_battery_current(di, val); break; case POWER_SUPPLY_PROP_CAPACITY: ret = bq27x00_simple_value(di->cache.capacity, val); break; case POWER_SUPPLY_PROP_CAPACITY_LEVEL: ret = bq27x00_battery_capacity_level(di, val); break; case POWER_SUPPLY_PROP_TEMP: ret = bq27x00_simple_value(di->cache.temperature, val); if (ret == 0) val->intval -= 2731; break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_NOW: ret = bq27x00_simple_value(di->cache.time_to_empty, val); break; case POWER_SUPPLY_PROP_TIME_TO_EMPTY_AVG: ret = bq27x00_simple_value(di->cache.time_to_empty_avg, val); break; case POWER_SUPPLY_PROP_TIME_TO_FULL_NOW: ret = bq27x00_simple_value(di->cache.time_to_full, val); break; case POWER_SUPPLY_PROP_TECHNOLOGY: val->intval = POWER_SUPPLY_TECHNOLOGY_LION; break; case POWER_SUPPLY_PROP_CHARGE_NOW: ret = bq27x00_simple_value(bq27x00_battery_read_nac(di), val); break; case POWER_SUPPLY_PROP_CHARGE_FULL: ret = bq27x00_simple_value(di->cache.charge_full, val); break; case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN: ret = bq27x00_simple_value(di->charge_design_full, val); break; case POWER_SUPPLY_PROP_CYCLE_COUNT: ret = bq27x00_simple_value(di->cache.cycle_count, val); break; case POWER_SUPPLY_PROP_ENERGY_NOW: ret = bq27x00_simple_value(di->cache.energy, val); break; case POWER_SUPPLY_PROP_POWER_AVG: ret = bq27x00_simple_value(di->cache.power_avg, val); break; case POWER_SUPPLY_PROP_HEALTH: ret = bq27x00_simple_value(di->cache.health, val); break; default: return -EINVAL; } return ret; } static void bq27x00_external_power_changed(struct power_supply *psy) { struct bq27x00_device_info *di = to_bq27x00_device_info(psy); cancel_delayed_work_sync(&di->work); schedule_delayed_work(&di->work, 0); } static void __init set_properties_array(struct bq27x00_device_info *di, enum power_supply_property *props, int num_props) { int tot_sz = num_props * sizeof(enum power_supply_property); di->bat.properties = devm_kzalloc(di->dev, tot_sz, GFP_KERNEL); if (di->bat.properties) { memcpy(di->bat.properties, props, tot_sz); di->bat.num_properties = num_props; } else { di->bat.num_properties = 0; } } static int __init bq27x00_powersupply_init(struct bq27x00_device_info *di) { int ret; di->bat.type = POWER_SUPPLY_TYPE_BATTERY; if (di->chip == BQ27441) { set_properties_array(di, bq27441_battery_props, ARRAY_SIZE(bq27441_battery_props)); } else if (di->chip == BQ276XX) { set_properties_array(di, bq276xx_battery_props, ARRAY_SIZE(bq276xx_battery_props)); } else if (di->chip == BQ27520) { set_properties_array(di, bq27520_battery_props, ARRAY_SIZE(bq27520_battery_props)); } else if (di->chip == BQ2753X) { set_properties_array(di, bq2753x_battery_props, ARRAY_SIZE(bq2753x_battery_props)); } else { set_properties_array(di, bq27x00_battery_props, ARRAY_SIZE(bq27x00_battery_props)); } di->bat.get_property = bq27x00_battery_get_property; di->bat.external_power_changed = bq27x00_external_power_changed; INIT_DELAYED_WORK(&di->work, bq27x00_battery_poll); mutex_init(&di->lock); ret = power_supply_register(di->dev, &di->bat); if (ret) { dev_err(di->dev, "failed to register battery: %d\n", ret); return ret; } dev_info(di->dev, "support ver. %s enabled\n", DRIVER_VERSION); bq27x00_update(di); return 0; } static void bq27x00_powersupply_unregister(struct bq27x00_device_info *di) { /** power_supply_unregister call bq27x00_battery_get_property which* call bq27x00_battery_poll.* Make sure that bq27x00_battery_poll will not call* schedule_delayed_work again after unregister (which cause OOPS).*/ poll_interval = 0; cancel_delayed_work_sync(&di->work); power_supply_unregister(&di->bat); mutex_destroy(&di->lock); } /* i2c specific code */ #ifdef CONFIG_BATTERY_BQ27441_I2C /* If the system has several batteries we need a different name for each * of them... */ static DEFINE_IDR(battery_id); static DEFINE_MUTEX(battery_mutex); static int bq27xxx_read_i2c(struct bq27x00_device_info *di, u8 reg, bool single) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg[2]; unsigned char data[2]; int ret; if (!client->adapter) return -ENODEV; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].buf = ® msg[0].len = sizeof(reg); msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].buf = data; if (single) msg[1].len = 1; else msg[1].len = 2; ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg)); if (ret < 0) return ret; if (!single) ret = get_unaligned_le16(data); else ret = data[0]; return ret; } static int bq27xxx_write_i2c(struct bq27x00_device_info *di, u8 reg, int value, bool single) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg; unsigned char data[4]; int ret; if (!client->adapter) return -ENODEV; data[0] = reg; if (single) { data[1] = (unsigned char)value; msg.len = 2; } else { put_unaligned_le16(value, &data[1]); msg.len = 3; } msg.buf = data; msg.addr = client->addr; msg.flags = 0; ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) return ret; return 0; } static int bq27xxx_read_i2c_blk(struct bq27x00_device_info *di, u8 reg, u8 *data, u8 len) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg[2]; int ret; if (!client->adapter) return -ENODEV; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].buf = ® msg[0].len = 1; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].buf = data; msg[1].len = len; ret = i2c_transfer(client->adapter, msg, ARRAY_SIZE(msg)); if (ret < 0) return ret; return ret; } static int bq27xxx_write_i2c_blk(struct bq27x00_device_info *di, u8 reg, u8 *data, u8 sz) { struct i2c_client *client = to_i2c_client(di->dev); struct i2c_msg msg; int ret; u8 buf[33]; if (!client->adapter) return -ENODEV; buf[0] = reg; memcpy(&buf[1], data, sz); msg.buf = buf; msg.addr = client->addr; msg.flags = 0; msg.len = sz + 1; ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) return ret; return 0; } static int bq27x00_battery_reset(struct bq27x00_device_info *di) { bq27xxx_write(di, BQ27XXX_REG_CTRL, RESET_SUBCMD, false); msleep(10); return bq27xxx_read(di, BQ27XXX_REG_CTRL, false); } static int bq27x00_battery_read_fw_version(struct bq27x00_device_info *di) { bq27xxx_write(di, BQ27XXX_REG_CTRL, FW_VER_SUBCMD, false); msleep(10); return bq27xxx_read(di, BQ27XXX_REG_CTRL, false); } static int bq27x00_battery_read_device_type(struct bq27x00_device_info *di) { bq27xxx_write(di, BQ27XXX_REG_CTRL, DEV_TYPE_SUBCMD, false); msleep(10); return bq27xxx_read(di, BQ27XXX_REG_CTRL, false); } static int bq27x00_battery_read_dataflash_version(struct bq27x00_device_info *di) { bq27xxx_write(di, BQ27XXX_REG_CTRL, DF_VER_SUBCMD, false); msleep(10); return bq27xxx_read(di, BQ27XXX_REG_CTRL, false); } static ssize_t show_firmware_version(struct device *dev, struct device_attribute *attr, char *buf) { struct bq27x00_device_info *di = dev_get_drvdata(dev); int ver; ver = bq27x00_battery_read_fw_version(di); return sprintf(buf, "%d\n", ver); } static ssize_t show_dataflash_version(struct device *dev, struct device_attribute *attr, char *buf) { struct bq27x00_device_info *di = dev_get_drvdata(dev); int ver; ver = bq27x00_battery_read_dataflash_version(di); return sprintf(buf, "%d\n", ver); } static ssize_t show_device_type(struct device *dev, struct device_attribute *attr, char *buf) { struct bq27x00_device_info *di = dev_get_drvdata(dev); int dev_type; dev_type = bq27x00_battery_read_device_type(di); return sprintf(buf, "%d\n", dev_type); } static ssize_t show_reset(struct device *dev, struct device_attribute *attr, char *buf) { struct bq27x00_device_info *di = dev_get_drvdata(dev); bq27x00_battery_reset(di); return sprintf(buf, "okay\n"); } static ssize_t show_por_detect(struct device *dev,struct device_attribute *attr, char *buf) { return sprintf(buf, "OK\n"); } static ssize_t store_por_detect(struct device *dev,struct device_attribute *attr, const char *buf,size_t count) { int ret; unsigned long data; struct bq27x00_device_info *di = dev_get_drvdata(dev); ret = strict_strtoul(buf, 10, &data); if(data) { printk("bq27441 update charge_full_design\n"); di->charge_design_full = bq27x00_battery_read_dcap(di); } else { printk("bq27441 disable update charge_full_design\n"); por_detect_flag = 0; } return count; } static DEVICE_ATTR(fw_version, S_IRUGO, show_firmware_version, NULL); static DEVICE_ATTR(df_version, S_IRUGO, show_dataflash_version, NULL); static DEVICE_ATTR(device_type, S_IRUGO, show_device_type, NULL); static DEVICE_ATTR(reset, S_IRUGO, show_reset, NULL); static DEVICE_ATTR(por_detect, S_IRUSR | S_IWUSR, show_por_detect, store_por_detect); static struct attribute *bq27x00_attributes[] = { &dev_attr_fw_version.attr, &dev_attr_df_version.attr, &dev_attr_device_type.attr, &dev_attr_reset.attr, &dev_attr_por_detect.attr, NULL }; static const struct attribute_group bq27x00_attr_group = { .attrs = bq27x00_attributes, }; static int __init bq27x00_battery_probe(struct i2c_client *client,const struct i2c_device_id *id) { char *name; struct bq27x00_device_info *di; int num; int retval = 0; u8 *regs; /* Get new ID for the new battery device */ retval = idr_pre_get(&battery_id, GFP_KERNEL); if (retval == 0) return -ENOMEM; mutex_lock(&battery_mutex); retval = idr_get_new(&battery_id, client, &num); mutex_unlock(&battery_mutex); if (retval < 0) return retval; name = kasprintf(GFP_KERNEL, "%s-%d", id->name, num); if (!name) { dev_err(&client->dev, "failed to allocate device name\n"); retval = -ENOMEM; goto batt_failed_1; } di = kzalloc(sizeof(*di), GFP_KERNEL); if (!di) { dev_err(&client->dev, "failed to allocate device info data\n"); retval = -ENOMEM; goto batt_failed_2; } di->id = num; di->dev = &client->dev; di->chip = id->driver_data; di->bat.name = name; di->bus.read = &bq27xxx_read_i2c; di->bus.write = &bq27xxx_write_i2c; di->bus.blk_read = bq27xxx_read_i2c_blk; di->bus.blk_write = bq27xxx_write_i2c_blk; di->dm_regs = NULL; di->dm_regs_count = 0; if (di->chip == BQ27200) regs = bq27200_regs; else if (di->chip == BQ27500) regs = bq27500_regs; else if (di->chip == BQ27520) regs = bq27520_regs; else if (di->chip == BQ2753X) regs = bq2753x_regs; else if (di->chip == BQ27441) { regs = bq27441_regs; di->dm_regs = bq27441_dm_regs; di->dm_regs_count = ARRAY_SIZE(bq27441_dm_regs); } else if (di->chip == BQ276XX) { /* commands are same as bq274xx, only DM is different */ regs = bq276xx_regs; di->dm_regs = bq276xx_dm_regs; di->dm_regs_count = ARRAY_SIZE(bq276xx_dm_regs); } else { dev_err(&client->dev, "Unexpected gas gague: %d\n", di->chip); regs = bq27520_regs; } memcpy(di->regs, regs, NUM_REGS); di->fw_ver = bq27x00_battery_read_fw_version(di); retval = bq27x00_powersupply_init(di); if (retval) goto batt_failed_3; /* Schedule a polling after about 1 min */ schedule_delayed_work(&di->work, 60 * HZ); i2c_set_clientdata(client, di); retval = sysfs_create_group(&client->dev.kobj, &bq27x00_attr_group); if (retval) dev_err(&client->dev, "could not create sysfs files\n"); return 0; batt_failed_3: kfree(di); batt_failed_2: kfree(name); batt_failed_1: mutex_lock(&battery_mutex); idr_remove(&battery_id, num); mutex_unlock(&battery_mutex); return retval; } static int bq27x00_battery_remove(struct i2c_client *client) { struct bq27x00_device_info *di = i2c_get_clientdata(client); bq27x00_powersupply_unregister(di); kfree(di->bat.name); mutex_lock(&battery_mutex); idr_remove(&battery_id, di->id); mutex_unlock(&battery_mutex); kfree(di); return 0; } static const struct i2c_device_id bq27x00_id[] = { { "bq27200", BQ27200 }, { "bq27500", BQ27500 }, { "bq27520", BQ27520 }, { "bq27441", BQ27441 }, { "bq276xx", BQ276XX }, { "bq2753x", BQ2753X }, {}, }; MODULE_DEVICE_TABLE(i2c, bq27x00_id); static struct i2c_driver bq27x00_battery_driver = { .driver = { .name = "bq27441", }, .probe = bq27x00_battery_probe, .remove = bq27x00_battery_remove, .id_table = bq27x00_id, }; module_i2c_driver(bq27x00_battery_driver); #endif /* platform specific code */ #ifdef CONFIG_BATTERY_BQ27441_PLATFORM static int bq27000_read_platform(struct bq27x00_device_info *di, u8 reg, bool single) { struct device *dev = di->dev; struct bq27000_platform_data *pdata = dev->platform_data; unsigned int timeout = 3; int upper, lower; int temp; if (!single) { /* Make sure the value has not changed in between reading the* lower and the upper part */ upper = pdata->read(dev, reg + 1); do { temp = upper; if (upper < 0) return upper; lower = pdata->read(dev, reg); if (lower < 0) return lower; upper = pdata->read(dev, reg + 1); } while (temp != upper && --timeout); if (timeout == 0) return -EIO; return (upper << 8) | lower; } return pdata->read(dev, reg); } static int bq27000_battery_probe(struct platform_device *pdev) { struct bq27x00_device_info *di; struct bq27000_platform_data *pdata = pdev->dev.platform_data; int ret; if (!pdata) { dev_err(&pdev->dev, "no platform_data supplied\n"); return -EINVAL; } if (!pdata->read) { dev_err(&pdev->dev, "no hdq read callback supplied\n"); return -EINVAL; } di = kzalloc(sizeof(*di), GFP_KERNEL); if (!di) { dev_err(&pdev->dev, "failed to allocate device info data\n"); return -ENOMEM; } platform_set_drvdata(pdev, di); di->dev = &pdev->dev; di->chip = BQ27200; di->bat.name = pdata->name ?: dev_name(&pdev->dev); di->bus.read = &bq27000_read_platform; ret = bq27x00_powersupply_init(di); if (ret) goto err_free; return 0; err_free: kfree(di); return ret; } static int bq27000_battery_remove(struct platform_device *pdev) { struct bq27x00_device_info *di = platform_get_drvdata(pdev); bq27x00_powersupply_unregister(di); kfree(di); return 0; } static struct platform_driver __initdata bq27000_battery_driver = { .probe = bq27000_battery_probe, .remove = bq27000_battery_remove, .driver = { .name = "bq27000-battery", .owner = THIS_MODULE, }, }; static inline int bq27x00_battery_platform_init(void) { int ret = platform_driver_register(&bq27000_battery_driver); if (ret) printk(KERN_ERR "Unable to register BQ27200 platform driver\n"); return ret; } static inline void bq27x00_battery_platform_exit(void) { platform_driver_unregister(&bq27000_battery_driver); } #else static inline int bq27x00_battery_platform_init(void) { return 0; } static inline void bq27x00_battery_platform_exit(void) {}; #endif /* * Module stuff */ static int __init bq27x00_battery_init(void) { int ret; ret = bq27x00_battery_platform_init(); return ret; } module_init(bq27x00_battery_init); static void __exit bq27x00_battery_exit(void) { bq27x00_battery_platform_exit(); } module_exit(bq27x00_battery_exit); MODULE_AUTHOR("Rodolfo Giometti <giometti@linux.it>"); MODULE_DESCRIPTION("BQ27x00 battery monitor driver"); MODULE_LICENSE("GPL");
gao jianfeng:
可能是什么原因导致的呢
,
Star Xu:
您好,建议您用EV2400是否可以读出来,如果能读出来证明您的硬件等没有什么问题, 主要在软件上。那么用EV2400只读取一个数,如电池电压,然后用示波器把i2c的波形抓取下来。再抓一下自己软件编写的的i2c波形,同样读取这个电压,看看两者有什么区别,很快就能定位到问题。比如ACK信号有没有?发送地址对不对?发送命令时序对不对等。
您可以参考 sample code
www.ti.com/…/BQ27XXXSW-LINUX
,
gao jianfeng:
您好.I2C 是通的,可以正确读取到寄存器的值,包括fw_version 。但是读出来 INITCOMP 这一位一直是0. 不知道是什么原因导致的
,
Star Xu:
您好,芯片从 RESET 命令到准备好测量或处理命令需要一段时间。 发出 RESET 命令后,检查 ITPOR = 1,然后轮询 CONTROL_STATUS[INITCOMP],然后再继续。
您用评估板做一下相同测试确认是什么问题。
,
gao jianfeng:
ITPOR 是1 ,然后轮询读取CONTROL_STATUS[INITCOMP] 位,轮询很久,很多次,依然是0。
,
Star Xu:
您好,正在询问更了解这款芯片的TI工程师,稍后回复。
,
gao jianfeng:
还有flags 寄存器 (0x06) 读出来的值是0x2A6
,
Star Xu:
您好,请参考 下面帖子的内容帮您解决问题
e2e.ti.com/…/bq27441-g1-issuing-the-reset-command-0x41-does-not-appear-to-re-initialize-the-ram-value-from-rom
您可以使用 BQStudio 来验证行为吗?我查看了代码,似乎没有什么异常。
,
gao jianfeng:
您好,前面问题描述有误,重新说明下,我们设备第一次装电池(不开机)关机充电时(实际Linux kernel 在运行了),会出现上面问题,但也不是一直读取不到,是时好时坏。 开机后,可以正常读取到电量,不会有上述问题。用bqstudio 验证时,INITCOMP 等标志位 跟代码里读出来是一样的,
,
Star Xu:
您好,建议您验证一下第一次装电池(不开机)关机充电和开机后有什么区别,是不是通讯的问题导致的。