TI中文支持网
TI专业的中文技术问题搜集分享网站

TDA4VM: yolov5m 在EVM上精度损失

Part Number:TDA4VM

Hi,TIer,

在部署 pretrained model yolov5m6_640_ti_lite_44p1_62p9.onnx(link 如下(1)) 到 TDA4 EVM (8bits 量化)时,基于coco dataset val2017做了精度测试,conf 0.001,nms 0.65,EVM上AP[0.5:0.95]结果0.284,与TI发布页(link 如下(2))中浮点模型的精度0.441相差很大,TIDL 尝试了16bits 量化,EVM上结果为0.311,精度损失依然很大。

(1) https://github.com/TexasInstruments/edgeai-yolov5/blob/master/pretrained_models/models/detection/coco/edgeai-yolov5/yolov5m6_640_ti_lite_44p1_62p9.onnx.link

(2) https://github.com/TexasInstruments/edgeai-yolov5

请问:

1. TI 基于此pretrained yolov5m model是否有做过TDA4 EVM上的精度测试,结果如何?

2. 麻烦帮忙check 下import的配置,是否有待改进的参数?或者针对这个模型,TI的推荐配置?

(1) 测试使用 TI_DEVICE_a72_test_dl_algo_host_rt.out,处理val2017

(2) import configuration file

    modelType = 2
    numParamBits = 8
    numFeatureBits = 8
    #quantizationStyle = 3
    quantizationStyle = 2
    inputNetFile = "../../test/testvecs/models/public/onnx/yolov5m6_640_ti_lite_44p1_62p9.onnx"
    outputNetFile = "../../test/testvecs/config/tidl_models/onnx/tidl_net_yolov5m6_640_ti_lite_44p1_62p9.bin"
    outputParamsFile = "../../test/testvecs/config/tidl_models/onnx/tidl_io_yolov5m6_640_ti_lite_44p1_62p9_"
    inDataNorm = 1
    inMean = 0 0 0
    inScale = 0.003921568627 0.003921568627 0.003921568627
    inDataFormat = 1
    inWidth = 640
    inHeight = 640
    inNumChannels = 3
    numFrames = 1
    inData = "../../test/testvecs/config/detection_list.txt"
    perfSimConfig = ../../test/testvecs/config/import/device_config.cfg
    inElementType = 0
    metaArchType = 4
    metaLayersNamesList = "../../test/testvecs/config/import/public/onnx/yolov5m6_640_ti_lite_metaarch.prototxt"
    postProcType = 2
    foldPreBnConv2D = 0
    #calibrationOption = 7

(3) prototxt file:相对于发布配置,只修改了 confidence_threshold: 0.001

(4) infer configuration file

    inFileFormat = 2
    numFrames = 5000
    netBinFile = "testvecs/config/tidl_models/onnx/tidl_net_yolov5m6_640_ti_lite_44p1_62p9.bin"
    ioConfigFile = "testvecs/config/tidl_models/onnx/tidl_io_yolov5m6_640_ti_lite_44p1_62p9_1.bin"
    inData = testvecs/config/name_list_acc.txt
    outData = testvecs/output/tidl_yolov5m6_640_ti_lite_44p1_62p9_od.bin
    inResizeMode = 0
    debugTraceLevel = 0
    writeTraceLevel = 0
    postProcType = 2

Thanks

Regards

Cherry Zhou:

您好,我们已收到您的问题并升级到英文论坛寻求帮助,链接如下,如有答复将尽快回复您。

e2e.ti.com/…/tda4vm-yolov5m-loss-of-accuracy-issue-on-evm

,

Moore Ren:

Cherry,您好!

我看论坛仍然没有回复,麻烦再更新问一下TI是否有相关的精度测试结果及配置参考,谢谢!

,

Cherry Zhou:

十分抱歉,我们这边发邮件催促下工程师,给您带来的不便再次抱歉!

,

Cherry Zhou:

您好,

确保 inference pipeline与training repository的流程完全匹配并不困难。 因此建议您使用此存储库来进行benchmarking。

以下是包含此检测模型设置的配置文件:

https://www.ti2k.com/wp-content/uploads/ti2k/DeyiSupport_DSP_detection.py

赞(0)
未经允许不得转载:TI中文支持网 » TDA4VM: yolov5m 在EVM上精度损失
分享到: 更多 (0)