从TI网站上下载的demo程序可以采集A0,A1,A2,A3四个通道,但是我想改成A0一个通道,怎么修改?附上原始程序和修改后的程序(但不能很好工作,采用得到的A0通道数据和输入信号存在非常大的差别)
原始程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(3,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
修改后的程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
//AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
//AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
//AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
//AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
//AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
//AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
//AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(0,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
xu ming:
补充说明:我屏蔽掉两个通道,即只采集A0和A1,并在A0口输入正弦波,发现采样回来的波形存在非常大的偏差,但是如果采用原始程序,波形就非常好,请问这是什么原因啊?
从TI网站上下载的demo程序可以采集A0,A1,A2,A3四个通道,但是我想改成A0一个通道,怎么修改?附上原始程序和修改后的程序(但不能很好工作,采用得到的A0通道数据和输入信号存在非常大的差别)
原始程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(3,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
修改后的程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
//AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
//AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
//AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
//AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
//AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
//AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
//AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(0,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
Jones Chen:
回复 xu ming:
请问楼主用的是同步采样么?
如果同步采样管需要扔掉第一组的数据,具体见F283235的Errata。
从TI网站上下载的demo程序可以采集A0,A1,A2,A3四个通道,但是我想改成A0一个通道,怎么修改?附上原始程序和修改后的程序(但不能很好工作,采用得到的A0通道数据和输入信号存在非常大的差别)
原始程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(3,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
修改后的程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
//AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
//AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
//AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
//AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
//AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
//AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
//AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(0,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
xu ming:
回复 Jones Chen:
我设置的是顺序采样,并且AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode ,
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 1 conversions for every SOC
这样是不是只对对A0进行采样,结果分别放在AdcRegs.ADCRESULT0中?
然后,我用DMA,配置成
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(0,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
这样,把结果放在DMABuf1中。
运行结果发现,输入的信号是正弦波(采样频率和输入正弦波频率适当),但得到的波形根本不是正弦波。
从TI网站上下载的demo程序可以采集A0,A1,A2,A3四个通道,但是我想改成A0一个通道,怎么修改?附上原始程序和修改后的程序(但不能很好工作,采用得到的A0通道数据和输入信号存在非常大的差别)
原始程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(3,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
修改后的程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
//AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
//AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
//AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
//AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
//AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
//AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
//AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(0,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
jianfa cai:
回复 Jones Chen:
请问一下DMA传输的速度到底是不是每个字4个周期啊,为什么下面这个语句要延时那么久,我把j换成100都不能正常工作?
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
从TI网站上下载的demo程序可以采集A0,A1,A2,A3四个通道,但是我想改成A0一个通道,怎么修改?附上原始程序和修改后的程序(但不能很好工作,采用得到的A0通道数据和输入信号存在非常大的差别)
原始程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 3; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(3,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
修改后的程序
//###########################################################################
//
// FILE: Example_2833xAdcToDMA.c
//
// TITLE: DSP2833x ADC To DMA
// ASSUMPTIONS:
//
// This program requires the DSP2833x header files.
//
// Make sure the CPU clock speed is properly defined in
// DSP2833x_Examples.h before compiling this example.
//
// Connect the signals to be converted to channel A0, A1, A2, and A3.
//
// As supplied, this project is configured for "boot to SARAM"
// operation. The 2833x Boot Mode table is shown below.
// For information on configuring the boot mode of an eZdsp,
// please refer to the documentation included with the eZdsp,
//
// $Boot_Table:
//
// GPIO87 GPIO86 GPIO85 GPIO84
// XA15 XA14 XA13 XA12
// PU PU PU PU
// ==========================================
// 1 1 1 1 Jump to Flash
// 1 1 1 0 SCI-A boot
// 1 1 0 1 SPI-A boot
// 1 1 0 0 I2C-A boot
// 1 0 1 1 eCAN-A boot
// 1 0 1 0 McBSP-A boot
// 1 0 0 1 Jump to XINTF x16
// 1 0 0 0 Jump to XINTF x32
// 0 1 1 1 Jump to OTP
// 0 1 1 0 Parallel GPIO I/O boot
// 0 1 0 1 Parallel XINTF boot
// 0 1 0 0 Jump to SARAM <- "boot to SARAM"
// 0 0 1 1 Branch to check boot mode
// 0 0 1 0 Boot to flash, bypass ADC cal
// 0 0 0 1 Boot to SARAM, bypass ADC cal
// 0 0 0 0 Boot to SCI-A, bypass ADC cal
// Boot_Table_End$
//
//
// DESCRIPTION:
//
// ADC is setup to convert 4 channels for each SOC received, with total of 10 SOCs.
// Each SOC initiates 4 conversions.
// DMA is set up to capture the data on each SEQ1_INT. DMA will re-sort
// the data by channel sequentially, i.e. all channel0 data will be together
// all channel1 data will be together.
//
// Code should stop in local_DINTCH1_ISR when complete
//
// Watch Variables:
// DMABuf1
//
//###########################################################################
//
// Original source by: M.P.
//
// $TI Release: DSP2833x Header Files V1.10 $
// $Release Date: February 15, 2008 $
//###########################################################################
#include "DSP2833x_Device.h" // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h" // DSP2833x Examples Include File
// ADC start parameters
#if (CPU_FRQ_150MHZ) // Default – 150 MHz SYSCLKOUT
#define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3) = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
#define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2) = 25.0 MHz
#endif
#define ADC_CKPS 0x1 // ADC module clock = HSPCLK/2*ADC_CKPS = 25.0MHz/(1*2) = 12.5MHz
#define ADC_SHCLK 0xf // S/H width in ADC module periods = 16 ADC clocks
#define AVG 1000 // Average sample limit
#define ZOFFSET 0x00 // Average Zero offset
#define BUF_SIZE 40 // Sample buffer size
// Global variable for this example
Uint16 j=0;
#pragma DATA_SECTION(DMABuf1,"DMARAML4");
volatile Uint16 DMABuf1[40];
volatile Uint16 *DMADest;
volatile Uint16 *DMASource;
interrupt void local_DINTCH1_ISR(void);
void main(void)
{
Uint16 i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
InitSysCtrl();
// Specific clock setting for this example:
EALLOW;
SysCtrlRegs.HISPCP.all = ADC_MODCLK; // HSPCLK = SYSCLKOUT/ADC_MODCLK
EDIS;
// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
InitPieVectTable();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // Allow access to EALLOW protected registers
PieVectTable.DINTCH1= &local_DINTCH1_ISR;
EDIS; // Disable access to EALLOW protected registers
IER = M_INT7 ; //Enable INT7 (7.1 DMA Ch1)
EnableInterrupts();
// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
InitAdc(); // For this example, init the ADC
// Specific ADC setup for this example:
AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;
AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
AdcRegs.ADCTRL1.bit.SEQ_CASC = 0; // 0 Non-Cascaded Mode
AdcRegs.ADCTRL2.bit.INT_ENA_SEQ1 = 0x1;
AdcRegs.ADCTRL2.bit.RST_SEQ1 = 0x1;
AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
//AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
//AdcRegs.ADCCHSELSEQ1.bit.CONV02 = 0x2;
//AdcRegs.ADCCHSELSEQ1.bit.CONV03 = 0x3;
//AdcRegs.ADCCHSELSEQ2.bit.CONV04 = 0x0;
//AdcRegs.ADCCHSELSEQ2.bit.CONV05 = 0x1;
//AdcRegs.ADCCHSELSEQ2.bit.CONV06 = 0x2;
//AdcRegs.ADCCHSELSEQ2.bit.CONV07 = 0x3;
AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0; // Set up ADC to perform 4 conversions for every SOC
//Step 5. User specific code, enable interrupts:
// Initialize DMA
DMAInitialize();
// Clear Table
for (i=0; i<BUF_SIZE; i++)
{
DMABuf1[i] = 0;
}
// Configure DMA Channel
DMADest = &DMABuf1[0]; //Point DMA destination to the beginning of the array
DMASource = &AdcMirror.ADCRESULT0; //Point DMA source to ADC result register base
DMACH1AddrConfig(DMADest,DMASource);
DMACH1BurstConfig(0,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);
DMACH1ModeConfig(DMA_SEQ1INT,PERINT_ENABLE,ONESHOT_DISABLE,CONT_DISABLE,SYNC_DISABLE,SYNC_SRC,
OVRFLOW_DISABLE,SIXTEEN_BIT,CHINT_END,CHINT_ENABLE);
StartDMACH1();
// Start SEQ1
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 0x1;
for(i=0;i<10;i++){
for(j=0;j<1000;j++){}
AdcRegs.ADCTRL2.bit.SOC_SEQ1 = 1; //Normally ADC will be tied to ePWM, or timed routine
} //For this example will re-start manually
}
// INT7.1
interrupt void local_DINTCH1_ISR(void) // DMA Channel 1
{
// To receive more interrupts from this PIE group, acknowledge this interrupt
PieCtrlRegs.PIEACK.all = PIEACK_GROUP7;
// Next two lines for debug only to halt the processor here
// Remove after inserting ISR Code
asm (" ESTOP0");
for(;;);
}
jianfa cai:
回复 Jones Chen:
还有个问题,就是下面三条语句为什么这样设置?不是应该每1个burst后,源地址都回到起始地址吗?
DMACH1BurstConfig(3,1,10);
DMACH1TransferConfig(9,1,0);
DMACH1WrapConfig(1,0,0,1);每2个burst后,源地址回到起始地址???